TODO: a survey on AI Magazine, a blogpost

Multi-hop reasoning Edit

  • HotpotQA (Yang et al. 2018)[1]

Comprehension Edit

Mathematical reasoning Edit


References Edit

  1. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning, C. D. (2020). Hotpotqa: A dataset for diverse, explainable multi-hop question answering. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018, 2369–2380.
  2. Frermann, L., Cohen, S. B., & Lapata, M. (2017). Whodunnit? Crime Drama as a Case for Natural Language Understanding. Retrieved from
  3. Trischler, A., Ye, Z., Yuan, X., & Suleman, K. (2016). Natural Language Comprehension with the EpiReader. Retrieved from
  4. Berant, J., Srikumar, V., Chen, P.-C., Linden, A. Vander, Harding, B., Huang, B., … Manning, C. D. (2014). Modeling Biological Processes for Reading Comprehension. In Empirical Methods in Natural Language Processing (EMNLP).
  5. Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing mathematical reasoning abilities of neural models. ICLR 2019, 1–17. Retrieved from
  6. Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh. 2015.
Community content is available under CC-BY-SA unless otherwise noted.